Recent computational developments in Krylov subspace methods for linear systems
نویسندگان
چکیده
Many advances in the development of Krylov subspace methods for the iterative solution of linear systems during the last decade and a half are reviewed. These new developments include different versions of restarted, augmented, deflated, flexible, nested, and inexact methods. Also reviewed are methods specifically tailored to systems with special properties such as special forms of symmetry and those depending on one or more parameters.
منابع مشابه
Solving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملIterative Solution of Linear Systems
Recent advances in the eld of iterative methods for solving large linear systems are reviewed. The main focus is on developments in the area of conjugate gradient-type algorithms and Krylov subspace methods for non-Hermitian matrices .
متن کاملLinear systems solvers – recent developments and implications for lattice computations
We review the numerical analysis’ understanding of Krylov subspace methods for solving (non-hermitian) systems of equations and discuss its implications for lattice gauge theory computations using the example of the Wilson fermion matrix. Our thesis is that mature methods like QMR, BiCGStab or restarted GMRES are close to optimal for the Wilson fermion matrix. Consequently, preconditioning appe...
متن کاملOn Some Recent Developments in Projection-based Model Reduction
In this paper, we describe some recent developments in the use of projection methods to produce reduced-order models for linear time-invariant dynamic systems. Previous related eeorts in model reduction problems from various applications are also discussed. An overview is given of the theory governing the deenition of the family of Rational Krylov methods, the practical heuristics involved and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerical Lin. Alg. with Applic.
دوره 14 شماره
صفحات -
تاریخ انتشار 2007